Vulverability of Complex Systems and Critical Vertices in AND/OR Graphs∗
نویسندگان
چکیده
AND/OR graphs and minimum-cost solution graphs have been studied extensively in artificial intelligence (see, e.g., Nilsson ). Generally, the AND/OR graphs are used to model problem solving processes. The minimumcost solution graph can be used to attack the problem with the least resource. However, in many cases we want to solve the problem within the shortest time period and we assume that we have as many concurrent resources as we need to run all concurrent processes. In this paper, we will study this problem and present an algorithm for finding the minimum-time-cost solution graph in an AND/OR graph. We will also study the following problems which often appear in industry when using AND/OR graphs to model manufacturing processes or to model problem solving processes: finding maximum (additive and nonadditive) flows and critical vertices in an AND/OR graph. A detailed study of these problems provide insight into the vulnerability of complex systems such as cyber-infrastructures and energy infrastructures (these infrastructures could be modeled with AND/OR graphs). For an infrastructure modeled by an AND/OR graph, the protection of critical vertices should have highest priority since terrorists could defeat the whole infrastructure with the least effort by destroying these critical points. Though there are well known polynomial time algorithms for the corresponding problems in the traditional graph theory, we will show that generally it isNP-hard to find a non-additive maximum flow in an AND/OR graph, and it is both NP-hard and coNP-hard to find a set of critical vertices in an AND/OR graph. We will also present a polynomial time algorithm for finding a maximum additive flow in an AND/OR graph, and discuss the relative complexity of these problems. ∗Research supported by DARPA F30602-97-1-0205.
منابع مشابه
A survey of the studies on Gallai and anti-Gallai graphs
The Gallai graph and the anti-Gallai graph of a graph G are edge disjoint spanning subgraphs of the line graph L(G). The vertices in the Gallai graph are adjacent if two of the end vertices of the corresponding edges in G coincide and the other two end vertices are nonadjacent in G. The anti-Gallai graph of G is the complement of its Gallai graph in L(G). Attributed to Gallai (1967), the study ...
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملPaired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002